19,559 research outputs found

    The 100 micron surveys in the Northern and Southern Hemispheres

    Get PDF
    Partial surveys in the far infrared in the Northern and Southern Hemispheres have covered 40% of the galactic equator and assorted regions away from the galactic plane. Approximately 120 100-micron objects are known. These are distributed extensively in galactic longitude and concentrated within + or - two degrees in galactic latitude. From this information, some general conclusions can be drawn about the sensitivity and coverage required for a general sky survey in the far infrared

    Doubled Full Shot Noise in Quantum Coherent Superconductor - Semiconductor Junctions

    Full text link
    We performed low temperature shot noise measurements in Superconductor (TiN) - strongly disordered normal metal (heavily doped Si) weakly transparent junctions. We show that the conductance has a maximum due to coherent multiple reflections at low energy and that shot noise is then twice the Poisson noise (S=4eI). The shot noise changes to the normal value (S=2eI) due to a large quasiparticle contribution.Comment: published in Physical Review Letter

    Medium-Term Aspects of a Coal Revival: Two Case Studies. Report of the IIASA Coal Task Force

    Get PDF
    Analysis of the energy options open to mankind once cheap oil and gas resources have been exhausted is one of the main areas of research within the IIASA Energy Systems Program. This report summarizes the collaborative efforts of experts from British and German coal bodies in investigating potentials and problems of a medium-term revival of coal. The two countries were chosen as examples, because coal has played a central role in their industrial development and still possesses a major share in their supply balances. Based on the results of the two case studies, the ongoing work of the Coal Task Force will concentrate on questions of the future world coal market, on global environmental problems in the truly extensive use of coal, and in particular on the critical role of coal as an option for transition to a non-fossil global energy supply system. The findings, though based on a quite extended time horizon, point to a number of imminent questions with respect to research and development programs and national energy policy decisions

    Characterization of the Schistosoma transcriptome opens up the world of helminth genomics

    Get PDF
    Among the metazoan parasites that cause debilitating disease in man, schistosomes are the first group for which near-complete transcriptome complements have been described. This new genomic information will have an enormous impact on all future investigations into the biology, pathogenesis and control of schistosomiasis

    Direct measurement of molecular stiffness and damping in confined water layers

    Get PDF
    We present {\em direct} and {\em linear} measurements of the normal stiffness and damping of a confined, few molecule thick water layer. The measurements were obtained by use of a small amplitude (0.36 A˚\textrm{\AA}), off-resonance Atomic Force Microscopy (AFM) technique. We measured stiffness and damping oscillations revealing up to 7 layers separated by 2.56 ±\pm 0.20 A˚\textrm{\AA}. Relaxation times could also be calculated and were found to indicate a significant slow-down of the dynamics of the system as the confining separation was reduced. We found that the dynamics of the system is determined not only by the interfacial pressure, but more significantly by solvation effects which depend on the exact separation of tip and surface. Thus ` solidification\rq seems to not be merely a result of pressure and confinement, but depends strongly on how commensurate the confining cavity is with the molecule size. We were able to model the results by starting from the simple assumption that the relaxation time depends linearly on the film stiffness.Comment: 7 pages, 6 figures, will be submitted to PR

    Hybrid phase-space simulation method for interacting Bose fields

    Get PDF
    We introduce an approximate phase-space technique to simulate the quantum dynamics of interacting bosons. With the future goal of treating Bose-Einstein condensate systems, the method is designed for systems with a natural separation into highly occupied (condensed) modes and lightly occupied modes. The method self-consistently uses the Wigner representation to treat highly occupied modes and the positive-P representation for lightly occupied modes. In this method, truncation of higher-derivative terms from the Fokker-Planck equation is usually necessary. However, at least in the cases investigated here, the resulting systematic error, over a finite time, vanishes in the limit of large Wigner occupation numbers. We tested the method on a system of two interacting anharmonic oscillators, with high and low occupations, respectively. The Hybrid method successfully predicted atomic quadratures to a useful simulation time 60 times longer than that of the positive-P method. The truncated Wigner method also performed well in this test. For the prediction of the correlation in a quantum nondemolition measurement scheme, for this same system, the Hybrid method gave excellent agreement with the exact result, while the truncated Wigner method showed a large systematic error.Comment: 13 pages; 6 figures; references added; figures correcte

    Test results of Spacelab 2 infrared telescope focal plane

    Get PDF
    The small helium cooled infrared telescope for Spacelab 2 is designed for sensitive mapping of extended, low-surface-brightness celestial sources as well as highly sensitive investigations of the shuttle contamination environment (FPA) for this mission is described as well as the design for a thermally isolated, self-heated J-FET transimpedance amplifier. This amplifier is Johnson noise limited for feedback resistances from less than 10 to the 8th power Omega to greater than 2 x 10 to the 10th power Omega at T = 4.2K. Work on the focal plane array is complete. Performance testing for qualification of the flight hardware is discussed, and results are presented. All infrared data channels are measured to be background limited by the expected level of zodiacal emission

    Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers

    Full text link
    Spin pumping is a mechanism that generates spin currents from ferromagnetic resonance (FMR) over macroscopic interfacial areas, thereby enabling sensitive detection of the inverse spin Hall effect that transforms spin into charge currents in non-magnetic conductors. Here we study the spin-pumping-induced voltages due to the inverse spin Hall effect in permalloy/normal metal bilayers integrated into coplanar waveguides for different normal metals and as a function of angle of the applied magnetic field direction, as well as microwave frequency and power. We find good agreement between experimental data and a theoretical model that includes contributions from anisotropic magnetoresistance (AMR) and inverse spin Hall effect (ISHE). The analysis provides consistent results over a wide range of experimental conditions as long as the precise magnetization trajectory is taken into account. The spin Hall angles for Pt, Pd, Au and Mo were determined with high precision to be 0.013±0.0020.013\pm0.002, 0.0064±0.0010.0064\pm0.001, 0.0035±0.00030.0035\pm0.0003 and −0.0005±0.0001-0.0005\pm0.0001, respectively.Comment: 11 page
    • …
    corecore